Vladimir V. Kouznetsov* and Diego F. Amado
Laboratorio de Síntesis Orgánica Fina, Centro de Investigación en Biomoléculas, Escuela de Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia

Ali Bahsas and Juan Amaro-Luis
Laboratorio de RMN, Grupo de Productos Naturales, Departamento de Química, Universidad de los Andes, Mérida 5101, Venezuela
Received January 18, 2005

New α, ω-bis-(2-hetaryl-4-oxothiazolidin-3-yl)alkanes were prepared via a common two step procedure using N, N-bis-hetarylidenamines condensation with α-mercaptoacetic acid. The used bis-aldimines were obtained from reaction between ethylenediamine or putrescine and benzaldehyde or the isomeric pyridinecarboxyaldehydes. The bis-(2-phenyl-4-oxothiazolidin-3-yl)alkanes were prepared by one-pot three component reaction of diamine, aldehyde and α-mercaptoacetic acid under very mild conditions.
J. Heterocyclic Chem., 43, 447 (2006).

Introduction.
Thiazolidinones are important heterocyclic compounds, which exhibit a broad range of biological activities [1-4], including interesting profile as fungicidal [5,6], pesticide [7], antibacterial [8,9], anticonvulsant [10], antihistaminic [11], antioxidant [12], anti-inflammatory and antinociceptive $[13,14]$ agents etc. As a consequence many different protocols have been developed that allow the synthesis of 4-thiazolidinone skeletons. The method more used employs a two step preparation: reaction of aromatic ketones (aldehydes) and amines and condensation of the prepared Schiff bases and α-mercaptoalkanoic acids [1-3]. However, a one-pot three-component reaction of amine, aldehyde and mercaptoacetic acid is recently emerged as an efficient synthesis of 4-thiazolidinones [15-18]. In both cases the reaction is believed to proceed first via an imine formation followed by attack of sulphur nucleophile on the imine carbon and finally intramolecular cyclization with loss of a molecule of water [19,20]. Little is known about α, ω-bis-(2-hetaryl-4-oxothiazolidin-3-yl)alkanes [1-4]. However, several studies have revealed their anti-inflammatory, antihistaminic and analgesic activities [21,22]. Moreover, recently, it was found that some bis-(2-aryl-4-oxothiazolidin-3-yl)ethanes act as good cyclooxygenase-2 inhibitory agents [23,24].

Based on these facts and in continuation of our research on bioactive heterocycles including thiazolidinone derivatives [25-27], we prepared two new series of 1,2-bis-(4-oxothiazolidin-3-yl)ethanes and 1,4-bis-(4-oxothiazolidin-$3-y l) b u t a n e s$ with phenyl and pyridinyl fragments.

Furthermore, having in mind the polyamine properties in living systems as well as the already mentioned thiazolidinone advantages, the incorporation of a diamine moiety between two thiazolidinone rings seems to be a good idea and so does the synthesis of these heterocycles, potentially promising molecules in the bioactive studies against fungi and bacteria. Herein, we describe its synthesis and some physical-chemical properties.

Results and Discussion.
The N, N-bis-[phenylmethylen(pyridinylmethylene)]-ethane-1,2-diamines 7-10 and N, N-bis-[phenylmethylen (pyridinylmethylene)]butene-1,4-diamines $\mathbf{1 1 - 1 4}$ used in the preparation of these series were obtained by refluxing for 7 to 17 hours the solution in dry ethanol of the respective diamines (ethylenediamine $\mathbf{1}$ or putrescine $\mathbf{2}$) and aromatic aldehydes (benzaldehyde 3, pyridinecarboxyaldehydes 4-6) with the ratio $1: 2$ of reactants. Almost all bisimines were stable solid products which were easily characterized by the strong and sharp absorption band at 1639$1649 \mathrm{~cm}^{-1}$ corresponding to the $\mathrm{C}=\mathrm{N}$ bonds.

The condensation of the Schiff bases 7-14 with the α mercaptoacetic acid 15 with the ratio 1:2 by stirring in dry benzene with temperatures between 5 and $10^{\circ} \mathrm{C}$ did not take more than 20 min and allowed us to get the α, ω-bis-(2-hetaryl-4-oxothiazolidin-3-yl)alkanes $\mathbf{1 6 - 2 3}$ as solid products in good yields (Scheme 1).
Finally, the 1,2-bis-(2-phenyl-4-oxothiazolidin-3yl)ethane 16 and the 1,4-bis-(2-phenyl-4-oxothiazolidin-3yl)butane $\mathbf{2 0}$ were also obtained via the one-pot three-com-
ponent condensation by the reaction of diamines (ethylenediamine, putrescine), benzaldehyde and the mercaptoacetic acid with ratios 1:2.5:2.5 respectively, in refluxing dry acetonitrile for 12 hours to get solid products, which can be filtered and recrystallized in ethanol from the reaction mixture (Scheme 1).

The IR spectra of the compounds $\mathbf{1 6 - 2 3}$ show the typical $\mathrm{C}(=\mathrm{O})-\mathrm{N}$ stretching band appearing in the region of 1643$1680 \mathrm{~cm}^{-1}$. The strong and sharp band of the azomethine bonds was missing, which was a faithful evidence of the cyclocondensation.
The structure of all the bis-thiazolidinones was also confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT and bi-dimensional techniques as ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$, HMQC and HMBC . These analyses indicated the magnetic non-equivalence in the ethanic fragment protons as in the proton of the chiral C-2 at $\delta 5.74-5.89 \mathrm{ppm}$. A doublet is displayed due to its interaction with the proton H_{A} at C-5.

According to the gc-ms analysis made to the compound 17, there are two chromatographic peaks with almost equal retention times ($40.30 \mathrm{~min}, 41.81 \mathrm{~min}$), which are sign of corresponding racemate ($2 R, 2^{\prime} R / 2 S, 2^{\prime} S$) and meso-form ($2 R, 2^{\prime} S$-meso), as has been already proved [21-23]. But not only the bis-thiazolidinone 17 showed diastereoisomeric presence, the gc analysis of 16-19 exhibits broad chromatographic peaks, typical for overlapped peaks with very similar retention times. We were unable to separate these mixtures of isomers by conventional column chromatography.

The NMR spectra showed a set of signals for the corresponding protons of thiazolidinone rings and a resonance system $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ for the ethanic fragment protons of non-first-order spectra. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the compounds 16-19 displayed a doublet of doublets at $\delta 3.84-3.94 \mathrm{ppm}$ due to the methylene proton H_{A} at C-5 because of its interaction with the geminal proton H_{B} and the proton at the chiral C-2; doublet of doublets at $\delta 3.59-3.71 \mathrm{ppm}$ due to
the methylene proton H_{B} at $\mathrm{C}-5$ because of its interaction with the geminal proton H_{A} and a diastereotopic proton $\mathrm{H}_{\mathrm{A}}\left(6^{\prime}-\mathrm{H}_{\mathrm{A}}\right)$ at the $\mathrm{C}-1^{\prime}$ of the ethylene fragment. This last proton displayed a doublet of doublets or a multiplet at δ 2.55-2.79 ppm because of its interaction with the geminal proton $\mathrm{H}_{\mathrm{B}}\left(6^{\prime}-\mathrm{H}_{\mathrm{B}}\right)$ and the proton H_{B} at the $\mathrm{C}-5$. The 6^{\prime} H_{B} proton at the $\mathrm{C}-1^{\prime}$ aliphatic chain suffered the anisotropic effect from the near amide group or aryl substituents and it went to down field at $\delta 3.37-4.01 \mathrm{ppm}$ appearing overlapped with H_{B} as a multiplet. These geminal protons of each methylene group reside in magnetic non-equivalent environments. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the compounds 20-23 basically displayed similar shifts plus a multiplet at δ 1.14-1.30 ppm due to the methylene protons $\left(7-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{B}}\right)$ of the butane fragment.

We found also anisochronous chemical shifts along the whole molecules not only by the ethanic fragment protons but also the heterocyclic ring protons that proves the existence of a mixture of isomers.

The cross-peak in the COSY two dimensional spectrum was very useful in assigning signals. As an example, the compound $\mathbf{1 8}$ displays signals at 2.73 ppm , which present contours correlated at 3.55 ppm revealing a $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system. The contours corresponding at 3.66 ppm are correlated with the signals displayed at 3.92 ppm , these are heterocyclic $5-\mathrm{CH}_{2}$ signals, an AB system, and the last one (3.92 ppm) is also correlated with the signal at 5.82 ppm , the chiral proton. In turn there are contours that correlate this chiral proton with signals of two aromatic protons, a doublet of doublets at 7.43 and a multiplet at 8.57-8.58 ppm . The remaining aromatic proton contours of the pyridin-3-yl fragments behave as expected.

The HMQC two dimensional spectrum of $\mathbf{2 0}$ presents contours correlating the carbon signals at 24 ppm and the proton signals of the multiplet at $1.41-1.43 \mathrm{ppm}$ and the carbon signal at 42.9 ppm with the multiplets at 2.49-2.51 and $3.51-3.70 \mathrm{ppm}$, exposing the presence of the alkanic fragment. The contours correlating the signal at 37.9 ppm and the multiplets at 3.51-3.70 and 3.81-3.89 ppm belong to the diastereotopic $5-\mathrm{CH}_{2}$ of the thiazolidinone ring and two smaller contours correlate the signals at 64 and 5.82 ppm , the chiral $2-\mathrm{CH}$. The aromatic carbons signals between 126.9 and 128.9 ppm are correlated with the aromatic proton multiplet signal at $7.32-7.41$. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ shows the carbonyl carbon signals at 171.2 ppm .

The three-dimensional molecular geometry adopted for these bis-thiazolidinones depicted in Figure 1 was deduced from computational geometry programs of the type HYPERCHEM 7.0 with a molecular mechanic optimization MM+. From them, the most probable conformation acquired for the compounds $\mathbf{1 8}$ and $\mathbf{2 0}$ can be noted, named as "exo"- conformation, in which the phenyl groups are spaced at the maximal distance in a different plane.

Figure 1. Structure of compounds $\mathbf{1 8}$ and $\mathbf{2 0}$.

The antifungal and antibacterial properties of all obtained α, ω-bis-(2-hetaryl-4-oxothiazolidin-3-yl)alkanes were not evaluated in full measure due to the poor solubility of these compounds. However, preliminary assays showed that compound $\mathbf{2 3}$ was active against the fungi Penicillium notatum with a diameter of inhibition zone of 30 mm per $50 \mu \mathrm{~g}$, and compound 20 against the bacteria Bacillus brevis with a diameter of inhibition zone of 10 mm per $100 \mu \mathrm{~g}$ [28].

EXPERIMENTAL

General Method. The same experimental techniques were used as was previously reported [27].

General Procedure for Reaction of Diamine and Pyridinecarboxyaldehydes (or Benzaldehyde).
To diamine (1 mmol) in dry ethanol ($25-30 \mathrm{ml}$) was added the hetaryl aldehyde (2 mmol). The reaction mixture was stirred and refluxed for 7 to 17 hours. The crystalline solid products were collected by filtration and washed with heptanes. The liquid products were concentrated by distilling the ethanol off.
N, N-Bis-(phenylmethylen)ethane-1,2-diamine (7).
This compound was obtained in 100% yield as a yellow solid, $\mathrm{mp} 37-39^{\circ} \mathrm{C}$; ir (potassium bromide): $v=\mathrm{CH} 2847, v \mathrm{C}=\mathrm{N} 1643$ cm^{-1}; gc-ms: $\mathrm{t}_{\mathrm{R}}=25.05 \mathrm{~min}, \mathrm{~ms}: \mathrm{m} / \mathrm{z} 236$ (molecular ion).
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}$: C, $81.32 \% ; \mathrm{H}, 6.82 \%$; $\mathrm{N}, 11.85 \%$. Found: C, 81.39\%; H, 6.77\%; N, 11.84\%.

N,N-Bis-(pyridin-2-ylmethylene)ethane-1,2-diamine (8).
This compound was obtained in 86% yield as a dark red liquid; ir (potassium bromide): $v=\mathrm{CH} 2916, v \mathrm{C}=\mathrm{N} 1649 \mathrm{~cm}^{-1}$; gc-ms: $\mathrm{t}_{\mathrm{R}}=25.72 \mathrm{~min}, \mathrm{~ms}: \mathrm{m} / \mathrm{z} 238$ (molecular ion).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4}$: C, $70.57 \% ; \mathrm{H}, 5.92 \% ; \mathrm{N}, 23.51 \%$. Found: C, 70.47%; H, 6.02%; N, 23.51\%.
N, N^{\prime}-Bis-(pyridin-3-ylmethylene)ethane-1,2-diamine (9).
This compound was obtained in 100% yield as a yellow solid,
$\mathrm{mp} 84-85^{\circ} \mathrm{C}$; ir (potassium bromide): $v=\mathrm{CH} 2848, v \mathrm{C}=\mathrm{N} 1647$ cm^{-1}.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4}: \mathrm{C}, 70.57 \%$; $\mathrm{H}, 5.92 \% ; \mathrm{N}, 23.51 \%$. Found: C, 70.65\%; H, 6.07\%; N, 23.28\%
N, N-Bis-(pyridin-4-ylmethylene)ethane-1,2-diamine (10).
This compound was obtained in 71% yield as a white solid, mp $134-135^{\circ} \mathrm{C}$; ir (potassium bromide): $v=\mathrm{CH} 2844, v \mathrm{C}=\mathrm{N} 1649$ cm^{-1}; gc-ms: $\mathrm{t}_{\mathrm{R}}=27.42 \mathrm{~min}, \mathrm{~ms}: \mathrm{m} / \mathrm{z} 238$ (molecular ion).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4}$: C, 70.57%; $\mathrm{H}, 5.92 \% ; \mathrm{N}, 23.51 \%$. Found: C, 70.69%; H, 6.12%; N, 23.29%
N, N-Bis-(phenylmethylene)butane-1,4-diamine (11).
This compound was obtained in 100% yield as a yellow liquid; ir (potassium bromide): $v=\mathrm{CH} 2925, \mathrm{v}=\mathrm{N} 1645 \mathrm{~cm}^{-1}$; gc-ms: $\mathrm{t}_{\mathrm{R}}=29.28 \mathrm{~min}, \mathrm{~ms}: \mathrm{m} / \mathrm{z} 264$ (molecular ion).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 81.78\%; $\mathrm{H}, 7.63 \%$; $\mathrm{N}, 10.60 \%$. Found: C, 81.85\%; H,7.54\%; N, 10.61\%.
N, N-Bis-(pyridin-2-ylmethylene)butane-1,4-diamine (12).
This compound was obtained in 64% yield as an orange solid, mp $41-42^{\circ} \mathrm{C}$; ir (potassium bromide): $v=\mathrm{CH} 2912, v \mathrm{C}=\mathrm{N} 1639 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4}$: C, 72.15%; $\mathrm{H}, 6.81 \%$; $\mathrm{N}, 21.04 \%$. Found: C, 72.02%; H, 6.91\%; N, 21.03\%.
N, N-Bis-(pyridin-3-ylmethylene)butane-1,4-diamine (13).
This compound was obtained in 100% yield as a yellow viscous liquid; ir (potassium bromide): $v=\mathrm{CH} 2933, v \mathrm{C}=\mathrm{N} 1647 \mathrm{~cm}^{-1}$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4}$: C, $72.15 \% ; \mathrm{H}, 6.81 \% ; \mathrm{N}, 21.04 \%$. Found: C, 72.23%; H, 6.65\%; N, 21.22\%.
N,N-Bis-(pyridin-4-ylmethylene)butane-1,4-diamine (14).
This compound was obtained in 97% yield as a white solid, mp $73-74{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $v=\mathrm{CH} 2941, v \mathrm{C}=\mathrm{N} 1643 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4}$: C, 72.15%; $\mathrm{H}, 6.81 \% ; \mathrm{N}, 21.04 \%$. Found: C, 72.01%; H, 6.98\%; N, 21.01\%.
General Procedure for Reaction of Bis-aldimines (7-14) with α Mercaptoacetic Acid.

A mixture of the appropriate bis-aldimine (7-14) (4.20 mmoles) and the α-mercaptoacetic acid (8.40 mmoles) was
stirred in dry benzene in ice cold bath for $15-20 \mathrm{~min}$. The benzene was distilled off and the solid bis-thiazolidinones (16-23) were obtained from ethanol recrystallization.

1,2-Bis-(2-phenyl-4-oxo-1,3-thiazolidin-3-yl)ethane (16).

This compound was obtained in 68% yield as a white solid, mp $155-157^{\circ} \mathrm{C}$; ir (potassium bromide): v- $\mathrm{CH}_{2}-2924, v \mathrm{C}(=\mathrm{O})-\mathrm{N}$ $1666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.72-2.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 3.62-3.64 (m, 2H, CH ${ }_{2} \mathrm{CH}_{2}$), $3.71\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right.$; H_{A}), 3.84 (ddd, $J=2.0,11.0,16.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{B}}$), $5.89(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}), 7.30-7.42\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}(100$ $\mathrm{MHz}): \delta 171.4(2 \mathrm{C}=\mathrm{O}), 140(2 \mathrm{C}, \mathrm{Ph}), 128.9$ ($4 \mathrm{C}, \mathrm{Ph}$), 127.2 (4C, $\mathrm{Ph}), 127(2 \mathrm{C}, \mathrm{Ph}), 62.4(2 \mathrm{C}, 2-\mathrm{CH}), 43.3\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 32 \mathrm{ppm}$ ($2 \mathrm{C}, 5-\mathrm{CH}_{2}$); COSY correlations $\left[\delta_{\mathrm{H}} / \delta_{\mathrm{H}}(\mathrm{H} / \mathrm{H})\right]$: 2.72-2.79/3.62$3.64\left(2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.62-3.64 / 3.84\left(2 \mathrm{H}_{\mathrm{B}}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 3.71 / 3.84\left(2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right)$, 3.84/5.89 $\left(2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}, 2-\mathrm{CH}\right)$; HMQC correlations $\left[\delta_{\mathrm{C}} / \delta_{\mathrm{H}}\right.$ $(\mathrm{C} / \mathrm{H})]: 32.0 / 3.71\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2}\right), 32.0 / 3.84\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right)$, 43.3/2.72-2.79 $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 43.3 / 3.62-3.64\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $62.4 / 5.89(2 \mathrm{C} / 2 \mathrm{H}, 2-\mathrm{CH}), 127 / 7.30-7.42(2 \mathrm{C} / 2 \mathrm{H}, \mathrm{Ph})$, 127.2/7.30-7.42 (4C/4H, Ph), 128.9/7.30-7.42 (4C/4H, Ph); gc$\mathrm{ms}: \mathrm{t}_{\mathrm{R}}=43.66 \mathrm{~min}, \mathrm{~ms}: \mathrm{m} / \mathrm{z} 384$ (molecular ion).
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 62.47%; $\mathrm{H}, 5.24 \%$; $\mathrm{N}, 7.29 \%$. Found: C, 62.29%; H, 5.37\%; N,7.01\%.

1,2-Bis-[2-(pyridin-2-yl)-4-oxo-1,3-thiazolidin-3-yl]ethane (17).
This compound was obtained in 40% yield as a brown solid, mp $167-169^{\circ} \mathrm{C}$; ir (potassium bromide): $v-\mathrm{CH}_{2}-2941, v \mathrm{C}(=\mathrm{O})$ N $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriumcloroform): $\delta 2.71$ (dd, $J=8.0$, $18.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.65\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{A}}\right.$), 3.84 (dd, $J=2.0,16.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{B}}$), 3.93-4.00 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 5.87 (d, $\left.J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}\right), 7.22$ (ddd, $J=2.0,5.0$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}$), $7.28\left(\mathrm{dd}, J=2.0,16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}\right), 7.71$ (ddd, $J=2.0,8.0,16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}$), 8.5 (dd, $J=2.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}$); ${ }^{13} \mathrm{C} \mathrm{nmr}(100 \mathrm{MHz}): \delta 172.5$ (2C=O), 158.6 (2C, Py), 150.1 (2C, Py), 137.3 (2C, Py), 123.6 (2C, Py), 121.1 (2C, Py), 63.7 (2C, 2$\mathrm{CH}), 39.9\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 32.4 \mathrm{ppm}\left(2 \mathrm{C}, 5-\mathrm{CH}_{2}\right)$; COSY correlations $\left[\delta_{\mathrm{H}} / \delta_{\mathrm{H}}(\mathrm{H} / \mathrm{H})\right]: 2.71 / 3.93-4.0\left(2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.71 / 7.28\left(2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2} / 2 \mathrm{H}, \mathrm{Py}\right), 3.65 / 3.84\left(2 \mathrm{H}_{\mathrm{A}}, 5-\right.$ $\left.\mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 3.84 / 5.87\left(2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}, 2-\mathrm{CH}\right), 7.22 / 7.28$ (2H, Py/2H, Py), 7.22/7.71 (2H, Py/2H, Py), 7.22/8.5 (2 H , Py/2H, Py), 7.28/7.71 (2H, Py/2H, Py), 7.71/8.5 (2H, Py/2H, Py); HMQC correlations [$\delta_{\mathrm{C}} / \delta_{\mathrm{H}}(\mathrm{C} / \mathrm{H})$]: $32.4 / 3.65\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2}\right)$, $32.4 / 3.84\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 39.9 / 2.71\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 39.9/3.93-4.0 $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 63.7 / 5.87(2 \mathrm{C} / 2 \mathrm{H}, 2-\mathrm{CH})$, 121.1/7.28 (2C/2H, Py), 123.6/7.22 (2C/2H, Py), 137.3/7.71 $(2 \mathrm{C} / 2 \mathrm{H}, \mathrm{Py}), 150.1 / 8.5(2 \mathrm{C} / 2 \mathrm{H}, \mathrm{Py})$; gc-ms: $\mathrm{t}_{\mathrm{R} 1}=40.30 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}=$ $41.81 \mathrm{~min}, \mathrm{~ms}: \mathrm{m} / \mathrm{z} 386$ (molecular ion).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 55.94%; $\mathrm{H}, 4.69 \%$; N, 14.50%. Found: C, 56.05%; H, 4.57%; N, 14.66%.

1,2-Bis-[2-(pyridin-3-yl)-4-oxo-1,3-thiazolidin-3-yl]ethane (18).
This compound was obtained in 40% yield as a white solid, mp 198-200 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): v- $\mathrm{CH}_{2}-2930, v \mathrm{C}(=\mathrm{O})-\mathrm{N} 1670$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.73$ (dd, $J=5.8,14.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.55\left(\mathrm{dd}, J=5.8,14.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.66(\mathrm{~d}, J=15.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}, \mathrm{H}_{\mathrm{A}}\right), 3.92\left(\mathrm{dd}, \mathrm{J}=1.4,15.4 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}, \mathrm{H}_{\mathrm{B}}\right)$, $5.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}), 7.43\left(\mathrm{dd}, J=5.2,7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}\right)$, 7.78-7.81 (m, 2H, H ${ }_{\text {Py }}$), 8.57-8.58 (m, 4H, H_{Py}); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(100}$ MHz): $\delta 171$ (2C=O), 150 (2C, Py), 148.4 (2C, Py), 135.6 (2C, Py), 134.7 (2C, Py), 123.9 (2C, Py), 60 (2C, 2-CH), 39.5 (2C, $\mathrm{CH}_{2} \mathrm{CH}_{2}$),
$31.6 \mathrm{ppm}\left(2 \mathrm{C}, 5-\mathrm{CH}_{2}\right)$; COSY correlations $\left[\delta_{\mathrm{H}} / \delta_{\mathrm{H}}(\mathrm{H} / \mathrm{H})\right]: ~ 2.73 / 3.55$ $\left(2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.66 / 3.92\left(2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\right.$ $\left.\mathrm{CH}_{2}\right), 3.92 / 5.82\left(2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}, 2-\mathrm{CH}\right), 5.82 / 7.43(2 \mathrm{H}, 2-\mathrm{CH} / 2 \mathrm{H}$, Py), 5.82/8.57-8.58 (2H, 2-CH/4H, Py), 7.43/7.78-7.81 ($2 \mathrm{H}, \mathrm{Py} / 2 \mathrm{H}$, Рy), 7.43/8.57-8.58 (2H, Py/4H, Py), 7.78-7.81/8.57-8.58 (2H, Py/4H, Py); HMQC correlations [$\left.\delta_{\mathrm{C}} / \delta_{\mathrm{H}}(\mathrm{C} / \mathrm{H})\right]: 31.6 / 3.66\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}\right.$, 5-CH2 $), 31.6 / 3.92\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 39.5 / 2.73\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $39.5 / 3.55\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 60.0 / 5.82(2 \mathrm{C} / 2 \mathrm{H}, 2-\mathrm{CH}), 123.9 / 7.43$ (2C/2H, Py), 134.7/7.9 (2C/2H, Py), 148.4/8.57-8.58 (2C/2H, Py), 150/8.57-8.58 (2C/2H, Py).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 55.94%; H, 4.69%; N , 14.50%. Found: C, 56.07%; H, 4.58%; N, 14.76%.

1,2-Bis-[2-(pyridin-4-yl)-4-oxo-1,3-thiazolidin-3-yl]ethane (19).
This compound was obtained in 33% yield as a white solid, mp $224-225^{\circ} \mathrm{C}$; ir (potassium bromide): v $-\mathrm{CH}_{2}-2933, v \mathrm{C}(=\mathrm{O})-\mathrm{N}$ $1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.71$ (dd, $J=5.8,14.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.59-3.63 (m, 4H, $5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.85(\mathrm{dd}, \mathrm{J}=$ $1.8,16.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{B}}$), 5.74 (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}$), $7.31\left(\mathrm{dd}, J=1.2,4.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}\right), 8.55(\mathrm{dd}, J=1.2,4.5 \mathrm{~Hz}, 4 \mathrm{H}$, H_{Py}); ${ }^{13} \mathrm{C} \mathrm{nmr}(100 \mathrm{MHz}): \delta 171.2(2 \mathrm{C}=\mathrm{O}), 150.2(4 \mathrm{C}, \mathrm{Py}), 149$ (2C, Py), 121.4 (4C, Py), 60.8 (2C, 2-CH), 40.1 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $31.3 \mathrm{ppm}\left(2 \mathrm{C}, 5-\mathrm{CH}_{2}\right)$; COSY correlations $\left[\delta_{\mathrm{H}} / \delta_{\mathrm{H}}(\mathrm{H} / \mathrm{H})\right]$: 2.71/3.59-3.63 $\left(2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.71 / 7.31\left(2 \mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} / 4 \mathrm{H}, \mathrm{Py}\right), 3.59-3.63 / 3.85\left(2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right)$, $3.85 / 5.74\left(2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}, 2-\mathrm{CH}\right), 5.74 / 7.31(2 \mathrm{H}, 2-\mathrm{CH} / 4 \mathrm{H}, \mathrm{Py})$, 7.31/8.55 ($4 \mathrm{H}, \mathrm{Py} / 4 \mathrm{H}, \mathrm{Py})$; HMQC correlations $\left[\delta_{\mathrm{C}} / \delta_{\mathrm{H}}(\mathrm{C} / \mathrm{H})\right]$: $31.3 / 3.59-3.63\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2}\right), 31.3 / 3.85\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right)$, $40.1 / 2.71\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 40.1 / 3.59-3.63\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 60.8 / 5.74(2 \mathrm{C} / 2 \mathrm{H}, 2-\mathrm{CH}), 121.4 / 7.31(4 \mathrm{C} / 4 \mathrm{H}, \mathrm{Py})$, 150.2/8.55 (4C/4H, Py); ms: m/z 386 (molecular ion).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $55.94 \% ; \mathrm{H}, 4.69 \%$; N , 14.50%. Found: C, 55.78%; H, 4.55%; N, 14.63%.

1,4-Bis-(2-phenyl-4-oxo-1,3-thiazolidin-3-yl)butane (20).

This compound was obtained in 44% yield as a white solid, mp $168-170{ }^{\circ} \mathrm{C}$; ir (potassium bromide): v- $\mathrm{CH}_{2}-2931$, v $\mathrm{C}(=\mathrm{O})-\mathrm{N}$ $1666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 1.41-1.43(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$), 2.49-2.51 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 3.51-3.70 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{A}}\right), 3.81-3.89\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{B}}\right), 5.82$ (d, $J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}$), 7.32-7.41 (m, 10H, H H_{Ph}); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(100}$ $\mathrm{MHz}): \delta 171.2$ (2C=O), 140.3 (2C, Ph), 128.9 (4C, Ph), 128.9 (4C, $\mathrm{Ph}), 126.9(2 \mathrm{C}, \mathrm{Ph}), 64.0(2 \mathrm{C}, 2-\mathrm{CH}), 42.9\left(2 \mathrm{C}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 37.9$ ($2 \mathrm{C}, 5-\mathrm{CH}_{2}$), $24.0 \mathrm{ppm}\left(2 \mathrm{C}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)$; COSY correlations $\left[\delta_{\mathrm{H}} / \delta_{\mathrm{H}}(\mathrm{H} / \mathrm{H})\right]: 1.41-1.43 / 2.49-2.51\left(4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 1.41-1.43/3.51-3.70 (4H, CH $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 2.49-2.51/3.51-3.70 $\left(2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} / 2 \mathrm{H}_{\mathrm{B}}\right.$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.51-3.70 / 3.81-3.89\left(2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 3.81-$ 3.89/5.82 $\left(2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}, 2-\mathrm{CH}\right)$; HMQC correlations [$\mathrm{\delta}_{\mathrm{C}} / \delta_{\mathrm{H}}$ $(\mathrm{C} / \mathrm{H})]: 24.0 / 1.41-1.43\left(2 \mathrm{C} / 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 37.9 / 3.51-3.70$ $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2}\right), 37.9 / 3.81-3.89\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 42.9 / 2.49-2.51$ $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 42.9 / 3.51-3.70\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 64.0/5.82 ($2 \mathrm{C} / 2 \mathrm{H}, 2-\mathrm{CH}$), 126.9/7.32-7.41 ($2 \mathrm{C} / 2 \mathrm{H}, \mathrm{Ph}$), 128.9/7.32-7.41 (4C/4H, Ph), 128.9/7.32-7.41 (4C/4H, Ph).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 64.05%; H, 5.86%; N , 6.79%. Found: C, 64.17%; H, 5.77%; N, 6.84%.

1,4-Bis-[2-(pyridin-2-yl)-4-oxo-1,3-thiazolidin-3-yl]butane (21).

This compound was obtained in 50% yield as a yellow solid, $\mathrm{mp} 162-163{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $v-\mathrm{CH}_{2}-2927, v \mathrm{C}(=\mathrm{O})$ N $1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(D M S O-\mathrm{d}_{6}\right): \delta 1.23-1.30(\mathrm{~m}, 4 \mathrm{H}$,
$\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)$, 2.49-2.59 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 3.43-3.51 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.55-3.62\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{A}}\right), 3.82(\mathrm{~d}, \mathrm{~J}=15.0$ $\mathrm{Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{B}}$), 5.79 (d, $\left.J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}\right), 7.32-7.36$ (m, 2H, H Py), 7.38 (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}$), $7.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}\right)$, 8.54 (dd, $J=1.5,4.5 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{H}_{\mathrm{Py}}$); ${ }^{13} \mathrm{C} \mathrm{nmr}(100 \mathrm{MHz}): \delta 171.2$ (2C=O), 159.3 (2C, Py), 149.7 (2C, Py), 137.4 (2C, Py), 123.5 (2C, Py), 121.0 (2C, Py), 62.6 (2C, 2-CH), 42.2 (2C, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, $31.6\left(2 \mathrm{C}, 5-\mathrm{CH}_{2}\right), 23.8 \mathrm{ppm}\left(2 \mathrm{C}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)$; COSY correlations $\left[\delta_{\mathrm{H}} / \delta_{\mathrm{H}}(\mathrm{H} / \mathrm{H})\right]:$ 1.23-1.30/2.49-2.59 $(4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 1.23-1.30/3.43-3.51 (4H, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.49-2.59 / 3.43-3.61\left(2 \mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.55-3.62 / 3.82\left(2 \mathrm{H}_{\mathrm{A}}, 5-\right.$ $\left.\mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 3.82 / 5.79\left(2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}, 2-\mathrm{CH}\right), 7.32-$ 7.36/7.38 (2H, Py/2H, Py), 7.32-7.36/7.37 (2H, Py/2H, Py), 7.327.36/8.54 (2H, Py/2H, Py), 7.38/7.37 (2H, Py/2H, Py); HMQC correlations $\left[\delta_{\mathrm{C}} / \delta_{\mathrm{H}}(\mathrm{C} / \mathrm{H})\right]:$ 23.8/1.23-1.30 $(2 \mathrm{C} / 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 31.6 / 3.55-3.62\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2}\right), 31.6 / 3.82$ $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right), 42.2 / 2.49-2.59\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 42.2/3.43-3.51 $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 62.6 / 5.79(2 \mathrm{C} / 2 \mathrm{H}, 2-\mathrm{CH})$, 121/7.38 (2C/2H, Py), 123.5/7.32-7.36 (2C/2H, Py), 137.4/7.37 (2C/2H, Py), 149.7/8.54 (2C/2H, Py).
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 57.95%; H, 5.35%; N, 13.52%. Found: C, 58.13%; H, 5.21%; N, 13.77%.

1,4-Bis-[2-(pyridin-3-yl)-4-oxo-1,3-thiazolidin-3-yl]butane (22).
This compound was obtained in 40% yield as a yellow solid, mp $143-145^{\circ} \mathrm{C}$; ir (potassium bromide): $v-\mathrm{CH}_{2}-2928, v \mathrm{C}(=\mathrm{O})-\mathrm{N} 1643$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): ~ \delta 1.14-1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)$, 2.55-2.60 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.37-3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, $3.65\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{A}}\right), 3.94(\mathrm{dd}, J=1.0,15.5 \mathrm{~Hz}, 2 \mathrm{H}$, $5-\mathrm{CH}_{2} ; \mathrm{H}_{\mathrm{B}}$), $5.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}), 7.41-7.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}\right)$, 7.78-7.81 (m, 2H, H ${ }_{\text {Py }}$), 8.55-8.58 (m, 4H, $\mathrm{H}_{\text {Py }}$); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(100}$ MHz): $\delta 170.5$ (2C=O), 149.9 (2C, Py), 148.2 (2C, Py), 136.3 (2C, Py), 134.6 (2C, Py), 124 (2C,Py), 59.6 (2C, 2-CH), 41.9 (2C, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, $31.7\left(2 \mathrm{C}, 5-\mathrm{CH}_{2}\right), 23.6 \mathrm{ppm}\left(2 \mathrm{C}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)$; COSY correlations $\left[\delta_{\mathrm{H}} / \delta_{\mathrm{H}}(\mathrm{H} / \mathrm{H})\right]:$ 1.14-1.30/2.55-2.60 $(4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 1.14-1.30/3.37-3.43 (4 H , $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.55-2.60 / 3.37-3.43\left(2 \mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} / 2 \mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.65 / 3.94\left(2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}_{\mathrm{B}}, 5-\right.$ $\left.\mathrm{CH}_{2}\right), 3.94 / 5.83\left(2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2} / 2 \mathrm{H}, 2-\mathrm{CH}\right), 5.83 / 7.41-7.45(2 \mathrm{H}, 2-$ CH/2H, Py), 7.41-7.45/7.78-7.81 (2H, Py/2H, Py), 7.41-7.45/8.558.58 (2H, Py/4H, Py), 7.78-7.81/8.55-8.58 (2H, Py/4H, Py); HMQC correlations $\left[\delta_{\mathrm{C}} / \delta_{\mathrm{H}}(\mathrm{C} / \mathrm{H})\right.$]: 23.6/1.14-1.30 $\left(2 \mathrm{C} / 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2}\right), 31.7 / 3.65\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, 5-\mathrm{CH}_{2}\right), 31.7 / 3.94\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}, 5-\mathrm{CH}_{2}\right)$, 41.9/2.55-2.60 $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, 41.9/3.37-3.43 $\left(2 \mathrm{C} / 2 \mathrm{H}_{\mathrm{B}}\right.$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 59.6 / 5.83(2 \mathrm{C} / 2 \mathrm{H}, 2-\mathrm{CH}), 124 / 7.41-7.45(2 \mathrm{C} / 2 \mathrm{H}, \mathrm{Py})$, 134.6/7.78-7.81 (2C/2H, Py), 148.2/8.55-8.58 (2C/4H, Py), 149.9/8.55-8.58 (2C/4H, Py).

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 57.95%; H, 5.35%; N , 13.52%. Found: C, 58.14%; H, 5.23%; N, 13.44%.

1,4-Bis-[2-(pyridin-4-yl)-4-oxo-1,3-thiazolidin-3-yl]butane (23).

This compound was obtained in 40% yield as a white solid, mp $164-166^{\circ} \mathrm{C}$; ir (potassium bromide): v $-\mathrm{CH}_{2}-2949, v \mathrm{C}(=\mathrm{O})-\mathrm{N}$ $1720 \mathrm{~cm}^{-1}$.
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $57.95 \% ; \mathrm{H}, 5.35 \%$; N, 13.52%; O, 7.72%; S, 15.47%. Found: C, 58.09%; H, 5.47%; N, 13.33\%.

General Procedure for One-Pot Three-Component Reaction of Diamine with Benzaldehyde and α-Mercaptoacetic Acid.

The appropriate diamine (1.0 mmol) and aldehyde (2.5 mmol) were stirred and refluxed in acetonitrile for 1 hour, followed by addition of mercaptoacetic acid (2.5 mmol). The reaction mixture was stirred and refluxed for 12 more hours. The precipitate product was filtered and the filtrate was concentrated. The residue was taken up with ethanol, where the remainder of product crystallized. After the filtered precipitate was washed with ethanol and dried to give the bis-thiazolidinones $\mathbf{1 6}$ and $\mathbf{2 0}$ in 59 and 36% yields, respectively.

Acknowledgements.

This work was supported by the grant of Instituto Colombiano Para el Desarrollo de La Ciencia y La Tecnología "Francisco José de Caldas" (COLCIENCIAS, Proyecto: 1102-05-11429). The authors thank to Dr. E. E. Stashenko for providing the gc-ms spectral data.

REFERENCES AND NOTES

[*] FAX 5776-346149 or 90212-224503. E-mail: kouznet@uis.edu.co
[1] F. C. Brown, Chem. Rev., 61, 463 (1961).
[2] G. R. Newcome and A. Nayak, Adv. Heterocycl. Chem., 25, 83 (1979).
[3] S. P. Singh, S. S. Parmar, K. Raman and V. I. Stenberg, Chem. Rev., 81, 175 (1981).
[4] V. P. Singh, G. S.Upadhyay and H. Singh, Asian J. Chem. Rev., 3, 12 (1992).
[5] H.-L. Liu, Z. Li and T. Anthonsen, Molecules, 5, 1055 (2000).
[6] A. Tsuruoka, Y. Y. Kaku, H. Kakinuma, I. Tsukada, M. Yanagishawa and T. Naito, Chem. Pharm. Bull., 45, 1169 (1997).
[7] S. Desai, P. B. Desai and K.R. Desai, Orient. J. Chem., 15, 499 (1999).
[8] S. G. Küçükgüzel, E. E. Oruç, S. Rollas, F. Sahin and A. Özbek, Eur. J. Med. Chem., 37, 197, (2002).
[9] R. L. Jarvest, J. M. Berge, P. Brown, D. W. Hamprecht, D. J. McNair, L. Mensah, P. J. O'Hanlon and A. J. Pope, Bioorg. Med. Chem. Lett., 11, 715 (2001).
[10] S. K. Srivastava, S. L. Srivastava and S. D. Srivastava, J. Indian. Chem. Soc., 77, 104 (2000).
[11] M. V. Diurno, O. Mazzoni, E. Piscopo, A. Calignano, F. Giordano and A. Bolognese, J. Med. Chem. 35, 2910 (1992).
[12] M.-H. Shin and F.-Y. Ke, Bioorg. Med. Chem., 12, 4633 (2004).
[13] G. C. Look, J. R. Schullek, C. P. Holmes, J. P. Chinn, E. M. Gordon and M. A. Gallop, Bioorg. Med. Chem. Lett., 6, 707 (1996).
[14] I. Vazzana,E. Terranova, F. Mattioli and F. Sparatore, ARKIVOC, (v), 364, (2004).
[15] A. H. M. de Vries, R. P. Hof, D. Staal, R. M. Kellogg and B.L. Feringa, Tetrahedron: Asymmetry, 8, 1539 (1997).
[16] T. Srivastava, W. Haq, S. B. Katti, Tetrahedron, 58, 7619 (2002).
[17] S. Allen, B. Newhouse, A. S. Anderson, B. Fauber, A. Allen, D. Chantry, C. Eberhardt, J. Odingo and L. E. Burgess, Bioorg. Med. Chem. Lett., 14, 1619 (2004).
[18] V. Gududuru, V. Nguyen, J. T. Dalton and D. D. Miller, Synlett, 2357 (2004).
[19] S. P. Lawande and B. R. Arbad, Ind. Chem. Soc., 77, 352 (2000).
[20] A. Bolognese, G. Correale, M. Manfra, A. Lavecchia, E. Novellino and V. Barone, Org. Biomol. Chem., 2, 2809 (2004).
[21] T. Previtera, M.G. Vigorita, M. Basile, F. Orsini, F. Benetollo and G. Bombieri, Eur. J. Med. Chem., 29, 317 (1994).
[22] M. G. Vigorita, R. Ottanà, F. Monforte, R. Maccari, A.

Trovato, M. T. Monforte and M. F. Taviano, Bioorg. Med. Chem. Lett., 11, 2791 (2001).
[23] M. G. Vigorita, R. Ottanà, F. Monforte, R. Maccari, A. Trovato, M. T. Monforte, M. F. Taviano, N. Miceli, G. De Luca, S. Alcaro and F. Ortuso, Bioorg. Med. Chem., 11, 999 (2003).
[24] R. Ottanà, S. Carotti, R. Maccari, I. Landini, G. Chiricosta, B. Caciagli, M. G. Vigorita and E. Mini, Bioorg. Med. Chem. Lett., 15, 3930 (2005).
[25] L. Y. Vargas Méndez, V. Kouznetsov, J. C. Poveda, C. Yolaçan, N. Öcal and F. Aydoğan, Heterocycl. Comтип., 7, 129 (2001).
[26] L. M. Vargas, V. Kouznetsov, N. Öcal, Ç. Yolaçan and Ş. Kaban, J. Heterocyclic Chem., 38, 233 (2001).
[27] V. Kouznetsov, W. Rodríguez, E. Stashenko, C. Ochoa, C. Vega, M. Rolón, D. Montero Pereira, J. A. Escario and A. Gómez Barrio, J. Heterocyclic Chem., 41, 995 (2004).
[28] For example, comp. 20 had diameter of growth inhibition zone of 10 mm at $100 \mu \mathrm{~g} / \mathrm{disk}$ for B. brevis. Chlorophenicol inhibition was 25 mm . The biological results about antiparasitic activities of these α, β-bis-(2-hetaryl-4-oxothiazolidin-3-yl)alkanes will be published elsewhere.

